ICML | 2020

Safe Reinforcement Learning in Constrained Markov Decision Processes

IBM Research AI

Akifumi Wachi, Yanan Sui

Introduction

Conventional reinforcement learning (RL) literature has pursued efficiency and optimality of the cumulative reward.

When RL algorithms are applied to real systems, **safet**y is an essential requirement.

We Consider a safety-constrained Markov Decision Processes (MDPs).

- Both reward and safety are unknown a priori.
- Our objective is to maximize the cumulative reward while guarantee safety.

Method

This problem requires an agent to balance 1) exploration of safety, 2) exploration of reward, and 3) exploitation reward.

This work takes a **step-wise approach**.

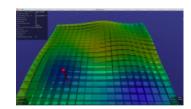
- 1. Exploration of safety
- 2. Optimization of the cumulative reward in the certified safe region.

Our proposed algorithm Safe Near-Optimal MDP (SNO-MDP) provide **Theoretical Guarantees on both Safety and Near-Optimality.**

We also proposed **Early-Stopping of Exploration of Safety (ES**²) algorithm for faster convergence.

Experiment

- Developed a new simulation environment called GP-Safety-Gym based on Open AI Safety Gym.
- Achieved better empirical performance than other baselines.



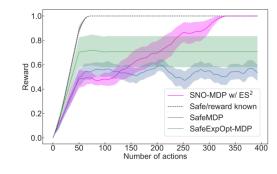
Reward (high: yellow, low: blue) Safety: height

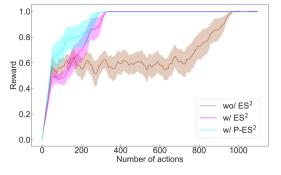
- SafeMDP (Turchetta et al., 2016)
- SafeExpOpt-MDP (Wachi et al., 2018)
- All methods, including the baselines, did not take any unsafe actions.

Paper and Code at www.yanansui.com

Exploration

of Safety





Performance comparison of SNO-MDP and other baselines Effect of ES² algorithm (P-ES² is a practical version of ES²)